Skip to main content
Logo image

Precalculus JumpStart

Solutions 1.6 Answers to Pretests

1.2 Algebra Pretest

1.2.2. Working with Exponents.

Answer.
  1. \(\displaystyle \left(-\sqrt{2}\right)^2-\left(\sqrt{2}\right)^4+\left(\sqrt{2}\right)^0+\sqrt{\left(-2\right)^4} = 3\)
  2. \(\displaystyle \sqrt{(-3)^2+(-4)^2} = 5\)
  3. \(\displaystyle \left(\sqrt[3]{-8}\right)^{-1} = -\frac{1}{2}\)
  4. \(\displaystyle \left(\frac{4}{9}\right)^{3/2} = \frac{8}{27}\)
  5. \(\displaystyle 27^{-2/3}=\frac{1}{9}\)
  6. \(\displaystyle \frac{2^{12}}{2^{10}} = 4\)

1.2.4. Converting to Exponential Form.

Answer.
\begin{equation*} \frac{3}{4x^5} - \sqrt{x^5} + \frac{1}{\sqrt[5]{x^2}} + \frac{2}{5 x^{-2}} = \frac{3}{4} x^5 - x^{5/2} + x^{-2/5} + \frac{2}{5} x^2 \end{equation*}

1.2.5. Using Scientific Notation.

Answer.
  1. \(\displaystyle \left(1.5\times 10^3 \right)\times\left(4.0 \times 10^{-2}\right) = 6.0\times 10^{1} = 60\)
  2. \(\displaystyle \frac{6.5\times 10^3}{2.0 \times 10^{-2}} = 3.25 \times 10^{5} = 325000\)
  3. \(\displaystyle \frac{6.5 \times 10^{-2}}{2.0\times 10^3} = 3.25 \times 10^{-5} = 0.0000325\)
  4. \(\displaystyle \left(1.5\times 10^3 \right)+\left(4.0 \times 10^{-2}\right) = 1500.04 = 1.50004 \times 10^{3}\)

1.2.6. Reducing Radicals.

Answer.
  1. \(\displaystyle \sqrt{16 x^3 y^6 z^2} = 4|x y^3 z | \, \sqrt{x}\)
  2. \(\displaystyle \sqrt[3]{16 x^5 y^6 z^3} = 2 x y^2 z \, \sqrt[3]{2 x^2}\)
  3. \(\displaystyle \sqrt[4]{16 x^5 y^6 z^4} = 2 |x y z| \, \sqrt[4]{x y^2}\)

1.2.8. Operations with Rational Expressions.

Answer.
  1. \(\displaystyle \displaystyle \frac{7-x^2}{x^2-2 x-3} \frac{x(7-x)}{(x-3) (x+1)}\)
  2. \(\displaystyle \displaystyle \frac{x+1}{2x-6}\)
  3. \(\displaystyle \displaystyle \frac{x (x+3)}{x+1} = \frac{x^2+3x}{x+1}\)

1.2.9. Factoring Trinomials.

Answer.
  1. \(\displaystyle x^2+2 x-15 = (x-3) (x+5) \)
  2. \(\displaystyle x^2-25x = x(x-25)\)
  3. \(\displaystyle x^2-25 = (x-5)(x+5)\)
  4. \(\displaystyle x^2-10 x+25 = (x-5)^2\)
  5. \(\displaystyle 2 x^2-5 x-3 = (2x+1)(x-3)\)
  6. \(\displaystyle 2 x^2+5 x-3 = (2x-1)(x+3)\)
  7. \(\displaystyle x^2+2 x-15 = (x-3)(x+5)\)
  8. \(\displaystyle 9x^4-y^2 = (3x^2-y)(3x^2+y)\)
  9. \(\displaystyle a^2-b^2 = (a-b)(a+b)\)
  10. \(\displaystyle a^2+2ab+b^2 = (a+b)^2\)
  11. \(\displaystyle a^2-2ab+b^2 = (a-b)^2\)

1.3 Functions Pretest

1.3.1. Cartesian Plane.

Answer.
It’s a circle centered at \((3,1)\) with radius \(r = 4\text{.}\) This is described by the equation \((x-3)^2+(y-1)^2 = 4^2\text{.}\) This meets the \(x\)-axis at two points: \((3-\sqrt{15},0)\) and \((3+\sqrt{15},0)\text{.}\)

1.3.3. Point-Slope Form.

Answer.
Point-Slope Form: \(y-y_0 = m(x-x_0)\text{.}\) In this case, \(m=-\frac{7}{8}\) and the line is given by
\begin{equation*} y-3 = -\frac{7}{8}\left(x+2\right) \quad \Rightarrow \quad y = -\frac{7}{8} x + \frac{10}{8} \end{equation*}

1.3.4. Linear Models.

Answer.
Rate of change: \(m = \frac{-2}{10}\) thousands of dollars per year.
\begin{equation*} V(t) = -\frac{2}{10}(t-15)+19 \end{equation*}
Purchase price: \(V(0) = 22\) thousands of dollars.

1.3.7. Graphs of Parent Functions.

Answer.
You may quickly compare your results with those in SectionΒ 7.3 or use a graphing tool.

1.3.8. Transforming Parent Functions.

Answer.
1) Shift the graph left \(3\) units; 2) reflect over the \(x\)-axis; 3) shift the graph up \(6\) units.
Zeros at \(x=-3\pm\sqrt{6}\text{.}\)

1.4 Exponential and Logarithms Pretest

1.4.2. Transforming Graphs of Exponential Functions.

Answer.
The graph is 1) reflected over the \(y\)-axis; 2) scaled vertically by a factor of \(3\text{,}\) then shifted up \(4\) units.
The \(y\)-intercept is at \((0,7)\text{.}\) There is a horizontal asymptote at \(y=3\text{.}\) The domain is still \((-\infty,\infty)\text{,}\) but the range is now \((3,\infty)\text{.}\)

1.4.3. Working with Logarithmic Expressions.

Answer.
  1. \(\log_2 (4) = 2\text{,}\) because \(2^2 = 4\text{.}\)
  2. \(\log_4 (2) = 1/2\text{,}\) because \(4^{1/2} = 2\text{.}\)
  3. \(\log_2 (0)\) is undefined because \(2^x \neq 0\) is never zero.
  4. \(\log_{1/2} (8) = -3\) because \((1/2)^{-3} = 8\text{.}\)
  5. \(\ln \left(\frac{1}{\sqrt[3]{e}}\right) = - \frac{1}{3}\) because \(e^{-1/3} = \frac{1}{\sqrt[3]{e}}\text{.}\)
  6. \(\ln(1) = 0\) because \(e^0 = 1\text{.}\)

1.4.4. Using Properties of Logarithms 1.

Answer.
\begin{equation*} \log_b\left(\frac{X Y^2}{b^3 \, \sqrt{Z}}\right) = -6 \end{equation*}

1.4.6. Using Properties of Logarithms 3.

Answer.
\begin{equation*} 3^{2\log_3(5)} = 25 \end{equation*}

1.4.7. Solving Exponential and Logarithmic Equations.

Answer.
  1. \(\displaystyle e^{-3x}=7 \quad \Rightarrow \quad x = - \frac{1}{3}\ln(7)\)
  2. \(\displaystyle \frac{1}{2-e^x}=2 \quad \Rightarrow \quad x = \ln(3/2)\)

1.5 Trigonometry Pretest

1.5.1. Radian Measure.

Answer.
Draw a circle of any radius. Measure an arc along the circle twice the radius in length. The corresponding angle is two radians. Since the circumference of a circle is \(2\pi r\text{,}\) an angle of \(\pi\) radians corresponds to an arc half the circumference. So \(\pi\) radians is \(180^\circ\text{.}\)

1.5.2. Arc-Length.

Answer.
\begin{equation*} s = (\text{$4$ inches}) \times 120^\circ \times \frac{\pi}{180^\circ} = \text{$8.38$ inches} \end{equation*}

1.5.3. Right Triangle Trigonometry.

Answer.
The hypotenuse is \(8\) inches. The side adjacent to \(\theta\) is \(\sqrt{60} = 2\sqrt{15}\text{.}\)

1.5.4. Trigonometric Functions.

Answer.
Using \(x=-3\text{,}\) \(y=1\text{,}\) and \(r=\sqrt{10}\) we have \(\sin(\theta) = 1/\sqrt{10}\text{,}\) \(\cos(\theta) = -3/\sqrt{10} \text{,}\) \(\tan(\theta) = -1/3\text{,}\) \(\csc(\theta) = \sqrt{10}\text{,}\) \(\sec(\theta) = -\sqrt{10}/3\text{,}\) and \(\cot(\theta) = -3\text{.}\)

1.5.5. Trigonometric Functions.

Answer.
Using \(x=1\text{,}\) \(y=-4\text{,}\) and \(r=\sqrt{17}\) we have \(\sin(\theta) = -4/\sqrt{17}\text{,}\) \(\cos(\theta) = 1/\sqrt{17} \text{,}\) \(\tan(\theta) = -4\text{,}\) \(\csc(\theta) = -\sqrt{17}/4\text{,}\) \(\sec(\theta) = -sqrt{17}\text{,}\) and \(\cot(\theta) = -1/4\text{.}\)

1.5.6. Evaluating Trigonometric Functions Using Reference Angles.

Answer.

1.5.8. Trigonometric Equations.

Answer.
\(\theta = \pi/2 + 2\pi k\) where \(k\) is any integer. That is, \(\theta\) is any angle coterminal to \(\pi/2\text{.}\)

1.5.10. Using Trigonometric Identities.

Answer.
\(\frac{\sin ^3(x) \left(1-\cos ^2(x)\right)}{\tan (x) \csc ^2(x)} = \sin ^6(x) \cos (x)\)

1.5.11. Addition Formulas.

Answer.
Use the Pythagorean Identity to find the missing trigonometric function values.
\begin{equation*} \sin(\alpha + \beta) = 0.2 \times 0.3 + \sqrt{0.96} \times \sqrt{0.91} \end{equation*}
\begin{equation*} \cos(\alpha+\beta) = \sqrt{0.96} \times 0.3 - 0.2 \times \sqrt{0.91} \end{equation*}