Iβll do one. From the double angle identity:
\begin{align*}
\cos(2\theta)
&= \cos^2 \theta - \sin^2 \theta\\
&= 1-\sin^2 \theta - \sin^2 \theta\\
\cos(2\theta)&= 1-2\sin^2 \theta
\end{align*}
Solve this last equation for \(\sin^2 \theta\text{,}\)
\begin{equation*}
\sin^2 \theta = \frac{1-\cos(2\theta)}{2}
\end{equation*}
Thus,
\begin{equation*}
\sin \theta =\pm\sqrt{\frac{1-\cos(2\theta)}{2}},
\end{equation*}
where the sign is determined by the quadrant \(\theta\) is in. Let \(\theta = x/2\text{,}\) then \(2\theta = x\) and
\begin{equation*}
\sin (x/2) =\pm\sqrt{\frac{1-\cos(x)}{2}}.
\end{equation*}