Skip to main content
Logo image

Precalculus JumpStart

Section 11.4 Addition Formulas

The addition formulas relate the value of the trigonometric function value of the sum of two angles to trigonometric function values of the individual angles. The two you should be most familiar withโ€”but should not attempt to memorize!โ€”are the addition formulas for sine and cosine below. Proofs of these can be found in a Precalculus or Calculus textbook.
Table 11.4.1.
Addition Formulas
\begin{equation*} \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \end{equation*}
\begin{equation*} \cos(\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \end{equation*}

Example 11.4.2.

Find \(\cos(75^\circ)\) and \(\sin(75^\circ)\) using the addition formulas and familiar trigonometric function values from Sectionย 9.3.
Solution.
Note that \(75^\circ = 45^\circ + 30^\circ\) and both of these are familiar angles whose values we know exactly from special triangles.
\begin{align*} \cos(75^\circ) \amp= \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ\\ \amp= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \frac{1}{2}\\ \amp= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\\ \amp= \frac{\sqrt{6}-\sqrt{2}}{4} \end{align*}
Similarly,
\begin{align*} \sin(75^\circ) \amp= \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ\\ \amp= \frac{\sqrt{2}}{2} \frac{1}{2} + \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}\\ \amp= \frac{\sqrt{2}+\sqrt{6}}{4}. \end{align*}