Theorem 8.5.1. Algebraic Properties of Logs.
Suppose \(a\neq 1\) is positive and suppose \(A\) and \(B\) are positive real numbers. Then,
-
\(\displaystyle \displaystyle \log_a(A\cdot B) = \log_a(A)+\log_a(B)\)
-
\(\displaystyle \displaystyle \log_a\left(\frac{A}{B}\right)= \log_a(A)-\log_a(B)\)
-
\(\displaystyle \displaystyle \log_a\left(A^n\right)= n\cdot \log_a(A)\)
In particular, for the natural logarithm with base \(e\text{,}\) we have:
-
\(\displaystyle \displaystyle \ln(A\cdot B) = \ln(A)+\ln(B)\)
-
\(\displaystyle \displaystyle \ln\left(\frac{A}{B}\right)= \ln(A)-\ln(B)\)
-
\(\displaystyle \displaystyle \ln\left(A^n\right)= n\cdot \ln(A)\)
