Skip to main content
Logo image

Precalculus JumpStart

Section 2.2 Scientific Notation

A number in the form \(a \times 10^n\) with \(1 \leq |a| \lt 10\) is said to be in scientific notation. For example,
\begin{equation*} 4.25 \times 10^{7} = 42500000, \quad -9\times 10^{-4} = -0.0009 \end{equation*}
are both in scientific notation. We can use properties of exponents to conveniently multiple and divide.

Example 2.7. Multiplying in Scientific Notation.

\begin{align*} \left(4.25\times 10^7\right) \times \left(-9\times 10^{-4}\right) \amp=\quad -4.25\times 9.1\times 10^7\times 10^{-4}\\ \amp=\quad -38.675 \times 10^{7-4}\\ \amp=\quad -38.675 \times 10^{3}\\ \amp=\quad -3.8675 \times 10^{1}\times 10^{3}\\ \amp=\quad -3.8675 \times 10^{4} \end{align*}

Example 2.8. Dividing in Scientific Notation.

\begin{align*} \frac{4.25\times 10^7}{-9.1\times 10^{-4}} \amp\approx\quad -0.467 \times 10^{7-(-4)}\\ \amp\approx\quad -0.467 \times 10^{11}\\ \amp\approx\quad -4.67 \times 10^{-1}\times 10^{11}\\ \amp\approx\quad -4.67 \times 10^{10} \end{align*}