Skip to main content
Logo image

Precalculus JumpStart

Section 4.3 Absolute Value Equations

Recall that \(|x|\text{,}\) the absolute value of \(x\) (1.7), measures how far \(x\) is from zero. So the equation
\begin{equation*} |x| = 4 \end{equation*}
tells us that \(x\) must be within \(4\) units of zero. There are only two possibilities for \(x\text{:}\)
\begin{equation*} x = 4 \quad \text{OR} \quad x = -4 \end{equation*}
which we write compactly as \(x=\pm 4\text{.}\) This method is summarized by the following principle.

Example 4.15. Solving a Linear Absolute Value Equation.

Let’s solve
\begin{equation*} |2x-3| +6 = 10. \end{equation*}
First, isolate the term with the absolute value.
\begin{equation*} |2x-3 | = 4 \end{equation*}
Thus, the number \(2x-3\) must be within \(4\) units of zero. There are only two possibilities
\begin{equation*} 2x-3 = 4 \quad \text{or} \quad 2x-3 = -4 \end{equation*}
Solving the first,
\begin{equation*} 2x-3 = 4 \Rightarrow 2x = 7 \Rightarrow x = 7/2 \end{equation*}
Solving the second,
\begin{equation*} 2x-3 = -4 \Rightarrow 2x = -1 \Rightarrow x = -1/2 \end{equation*}
Thus, the solutions to our equation are
\begin{equation*} x = 7/2, \, -1/2. \end{equation*}
Inequalities involving absolute values are useful in Calculus. For example, the inequality \(|x| \lt 4\) says that \(x\) must be within four units of zero. This requires \(x\) satisfy the compound inequality
\begin{equation*} -4 \lt x \quad \text{AND} \quad x \lt 4, \end{equation*}
or equivalently, \(-4 \lt x \lt 4\text{.}\) Similarly, the inequality \(|x| \gt 4\) requires that \(x\) be further than \(4\) units from zero. This requires \(x\) satisfy the compound inequality
\begin{equation*} x \lt -4 \quad \text{OR}\quad 4 \lt x. \end{equation*}

Example 4.17. Solving an Absolute Value Inequality.

Let’s solve
\begin{equation*} \left|2-3x\right| \leq 10. \end{equation*}
We require that \(2-3x\) is within \(10\) units of zero. So
\begin{gather*} -10 \leq 2-3x \leq 10\\ -12 \leq -3x \leq 8\\ -4 \leq -x \leq \frac{8}{3}\\ 4 \geq x \geq -\frac{8}{3}\\ -\frac{8}{3} \leq x \leq 4 \end{gather*}
So the solution is the interval \(\left[-\frac{8}{3},4\right]\text{.}\)

Example 4.18. Solving an Absolute Value Inequality.

Solve
\begin{equation*} \left|x-7\right| -5 \gt 6. \end{equation*}
Solution.
First, isolate the absolute value to obtain
\begin{equation*} \left|x-7\right| \gt 11. \end{equation*}
We require that \(x-7\) is more than \(11\) units from zero. So
\begin{gather*} x-7 \lt -11 \quad \text{OR} \quad 11 \lt x-7\\ x\lt -4 \quad \text{OR} \quad 18 \lt x \end{gather*}
So the solution is the union \((-\infty,-4)\cup(18,+\infty)\text{.}\)