Skip to main content\(\newcommand{\R}{\mathbb R}
\newcommand{\reference}[1]{\overline{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 4.8 Exercises
1. Avoiding Common Mistakes.
If \(A\cdot B = 0\) what must \(A\) or \(B\) be equal to? If \(C \cdot D = 1\) can you come to a similiar conclusion?
2. Solving Rational Equations.
Identify the domain of the equation. Then solve each rational equation for \(x\text{.}\) Show all your work as a sequence of equations.
\(\displaystyle \displaystyle \frac{2x+1}{4} = 0\)
\(\displaystyle \displaystyle \frac{4}{2x+1} = 0\)
\(\displaystyle \displaystyle \frac{4x}{2x+1} = 0\)
\(\displaystyle \displaystyle \frac{4x}{2x+1} = 1\)
\(\displaystyle \displaystyle \frac{4}{x+5}-2 = 1\)
\(\displaystyle \displaystyle \frac{5}{2x-8} -3 = -\frac{7}{x-1}\)
\(\displaystyle \displaystyle 3 - \frac{2}{x+1} = \frac{4}{x^2-1}\)
\(\displaystyle \displaystyle \frac{x+1}{x+2}-1 = \frac{x+2}{x-4}\)
Answer.
\(\displaystyle \displaystyle x=-1/2\)
No solutions.
\(\displaystyle \displaystyle x = 0\)
\(\displaystyle \displaystyle x = 1/2\)
\(\displaystyle \displaystyle x = -11/3\)
\(\displaystyle \displaystyle x = 5/2, \, 17/3\)
\(\displaystyle \displaystyle x=5/3\)
\(\displaystyle \displaystyle x=-5, \, 0\)
3. Solving Radical Equations.
Solve each radical equation for \(x\text{.}\) Show all your work as a sequence of equations. Be sure to check your results for extraneous solutions.
\(\displaystyle \displaystyle \sqrt{1-x} = 1\)
\(\displaystyle \displaystyle \sqrt{1-x} = -1\)
\(\displaystyle \displaystyle \sqrt{1-x} - 1 = x\)
\(\displaystyle \displaystyle \sqrt{1-x} +2= x\)
\(\displaystyle \displaystyle \sqrt[3]{1-x} = -1\)
\(\displaystyle \displaystyle \sqrt{x+1} = 2- \sqrt{x+2}\)
Answer.
\(\displaystyle \displaystyle x=0\)
No solutions.
\(\displaystyle \displaystyle x=0\)
No solutions.
\(\displaystyle \displaystyle x = 2\)
\(\displaystyle \displaystyle x=-7/16\)
4. Solving Absolute Value Equations.
Solve each absolute value equation for \(x\text{.}\) Show all your work as a sequence of equations.
\(\displaystyle \displaystyle |2x+1| = 3\)
\(\displaystyle \displaystyle |2x+1| = -3\)
\(\displaystyle \displaystyle |2x-1| = x\)
\(\displaystyle \displaystyle |2x+1| = x\)
Answer.
\(\displaystyle \displaystyle x = -2, \, 1\)
No solutions. The left side of the equation is never negative.
\(\displaystyle \displaystyle x = 1/3, \, 1\)
No solutions. Try solving the equations \(2x+1 = x\) and \(2x+1 = -x\text{.}\) Why do these not lead to solutions?
5. Avoiding Common Mistakes.
Is \(|x+2|\) the same as \(|x|+2\text{?}\) Is \(|2x|\) the same as \(2|x|\text{?}\)