Skip to main content
Logo image

Precalculus JumpStart

Exercises 3.8 Exercises

1. Simplifying Rational Expressions.

Simplify each expression. Assume \(x\) is a non-zero real number.
  1. \(\displaystyle \displaystyle \frac{1}{\frac{1}{x}}\)
  2. \(\displaystyle \displaystyle \frac{x}{\frac{1}{x}}\)
  3. \(\displaystyle \displaystyle \frac{1}{\frac{x}{x}}\)
  4. \(\displaystyle \displaystyle \frac{1}{\frac{x}{1}}\)
  5. \(\displaystyle \displaystyle \frac{x}{\frac{x}{1}}\)
  6. \(\displaystyle \displaystyle \frac{x}{\frac{x}{x}}\)

2. Avoiding Common Mistakes.

Is \(\displaystyle \frac{z}{x+y}\) the same as \(\displaystyle \frac{z}{x}+\frac{z}{y}\text{?}\) Is \(\displaystyle \frac{x+y}{z}\) the same as \(\displaystyle \frac{x}{z}+\frac{y}{z}\text{?}\)

3. Expanding Products.

Multiply and simplify your final answers.
  1. \(\displaystyle (x+y)^3\)
  2. \(\displaystyle x(x-y)^2\)
  3. \(\displaystyle (\sqrt{2}-3)(\sqrt{2}+3)\)
  4. \(\displaystyle (\sqrt{4x^2+1}-2x)(\sqrt{4x^2+1}+2x)\)
Answer.
  1. \(\displaystyle (x+y)^3 = x^3+3 x^2 y+3 x y^2+y^3\)
  2. \(\displaystyle x(x-y)^2 = x^3-2 x^2 y+x y^2\)
  3. \(\displaystyle (\sqrt{2}-3)(\sqrt{2}+3) = -7\)
  4. \(\displaystyle (\sqrt{4x^2+1}-2x)(\sqrt{4x^2+1}+2x) = 1\)

4. Addition and Subtraction with Rational Expressions.

Perform the indicated addition or subtraction and simplify the expression as much as possible. Show your work carefully as a sequence of equal expressions seperated with the equal sign.
  1. \(\displaystyle \displaystyle \frac{2x}{5} - \frac{2}{x+4}\)
  2. \(\displaystyle \displaystyle \frac{2}{5x} + \frac{2}{x+4}\)
  3. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}-\frac{x-1}{x-2}\)
  4. \(\displaystyle \displaystyle \frac{2}{x}+\frac{x-1}{x^2+1}\)
Answer.
  1. \(\displaystyle \displaystyle \frac{2x}{5} - \frac{2}{x+4} = \frac{2 \left(x^2+4 x-5\right)}{5 (x+4)}\)
  2. \(\displaystyle \displaystyle \frac{2}{5x} + \frac{2}{x+4} = \frac{4 (3 x+2)}{5 x (x+4)}\)
  3. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}-\frac{x-1}{x-2} = \frac{6-x^2}{(x-2) (x+2)}\)
  4. \(\displaystyle \displaystyle \frac{2}{x}+\frac{x-1}{x^2+1} = \frac{3 x^2-x+2}{x \left(x^2+1\right)}\)

5. Multiplication and Division with Rational Expressions.

Perform the indicated multplication or division and simplify the expression as much as possible. Show your work carefully as a sequence of equal expressions seperated with the equal sign.
  1. \(\displaystyle \displaystyle \frac{2x}{5} \cdot \frac{2}{x+4}\)
  2. \(\displaystyle \displaystyle \frac{2x}{5} \div \frac{2}{x+4}\)
  3. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}\cdot\frac{x-1}{x-2}\)
  4. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}\div\frac{x-1}{x-2}\)
Answer.
  1. \(\displaystyle \displaystyle \frac{2x}{5} \cdot \frac{2}{x+4} = \frac{4 x}{5 (x+4)} = \frac{4x}{5x+20}\)
  2. \(\displaystyle \displaystyle \frac{2x}{5} \div \frac{2}{x+4} = \frac{1}{5} x (x+4) = \frac{x^2+4x}{5}\)
  3. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}\cdot\frac{x-1}{x-2} = \frac{(x-1) (x+4)}{(x-2)^2 (x+2)}\)
  4. \(\displaystyle \displaystyle \frac{x+4}{x^2-4}\div\frac{x-1}{x-2} = \frac{x+4}{x^2+x-2}\)

6. Simplifying Compound Rational Expressions.

Simplify each expression as much as possible. Show your work carefully as a sequence of equal expressions seperated with the equal sign.
  1. \(\displaystyle \displaystyle \frac{\frac{3}{2x}}{\frac{1}{3x}}\)
  2. \(\displaystyle \displaystyle \frac{\frac{y}{x+y}+1}{x}\)
  3. \(\displaystyle \displaystyle \frac{\frac{1}{x}-\frac{1}{y}}{\frac{1}{x^2}+\frac{1}{y^2}}\)
  4. \(\displaystyle \displaystyle \frac{x+1-\frac{1}{x+1}}{\frac{x}{x+1}}\)
  5. \(\displaystyle \displaystyle \frac{1}{1+(y/x)^2}\)
Answer.
  1. \(\displaystyle \displaystyle \frac{\frac{3}{2x}}{\frac{1}{3x}} = 9/2\)
  2. \(\displaystyle \displaystyle \frac{\frac{y}{x+y}+1}{x} = \frac{x+2y}{x^2+xy}\)
  3. \(\displaystyle \displaystyle \frac{\frac{1}{x}-\frac{1}{y}}{\frac{1}{x^2}+\frac{1}{y^2}} = \frac{xy^2-x^2y}{x^2+y^2}\)
  4. \(\displaystyle \displaystyle \frac{x+1-\frac{1}{x+1}}{\frac{x}{x+1}} = 2+x\)
  5. \(\displaystyle \displaystyle \frac{1}{1+(y/x)^2} = \frac{x^2}{x^2+y^2}\)

7. Simplifying Radical Expressions.

Perform the indicated operation and simplify the expression as much as possible. Show your work carefully as a sequence of equal expressions seperated with the equal sign.
  1. Subtract: \(\displaystyle \frac{\sqrt{4+x^2}}{x}-\frac{x}{\sqrt{4+x^2}}\)
  2. Multiply: \(\displaystyle \frac{\sqrt{4+x^2}-2}{x} \cdot \frac{\sqrt{4+x^2}+2}{\sqrt{4+x^2}+2}\)
Answer.
  1. \(\displaystyle \displaystyle \frac{\sqrt{4+x^2}}{x}-\frac{x}{\sqrt{4+x^2}} = \frac{4}{x \sqrt{x^2+4}} \)
  2. \(\displaystyle \displaystyle \frac{\sqrt{4+x^2}-2}{x} \cdot \frac{\sqrt{4+x^2}+2}{\sqrt{4+x^2}+2} = \frac{x}{\sqrt{4+x^2}+2}\)

8. Avoiding Common Mistakes.

Is \(\sqrt{x^2}\) the same as \(x\text{?}\) Is \(\sqrt{4+x^2}\) the same as \(2+x\text{?}\) Is \(\sqrt{4x^2}\) the same as \(2x\text{?}\)

9. Simplifying Absolute Value Expressions.

Simplify the expression in the case that \(x \gt 2\text{,}\) \(x \lt 2\text{,}\) and \(x=2\text{,}\) if possible. Summarize your conclusions.
  1. \(\displaystyle \displaystyle |2-x|\)
  2. \(\displaystyle \displaystyle \frac{x-2}{|x-2|}\)
  3. \(\displaystyle \displaystyle \frac{|2-x|}{x-2}\)
  4. \(\displaystyle \displaystyle \frac{x^2-4}{|x-2|}\)
Answer.
  1. \(\displaystyle \displaystyle |2-x| = \begin{cases} 2-x, & \text{if $x \lt 2$}\\ x-2, & \text{if $x \geq 2$}\end{cases}\)
  2. \(\displaystyle \displaystyle \frac{x-2}{|x-2|} = \begin{cases} -1, & \text{if $x \lt 2$} \\ 1, & \text{if $x \gt 2$} \\ \text{undef.}, & \text{if $x = 2$} \end{cases}\)
  3. \(\displaystyle \displaystyle \frac{|2-x|}{x-2} = \begin{cases} -1, & \text{if $x \lt 2$} \\ 1, & \text{if $x \gt 2$} \\ \text{undef.}, & \text{if $x = 2$} \end{cases}\)
  4. \(\displaystyle \displaystyle \frac{x^2-4}{|2-x|} = \begin{cases} x+2, & \text{if $x \lt 2$} \\ -x-2, & \text{if $x \gt 2$} \\ \text{undef.}, & \text{if $x = 2$} \end{cases}\)

10. Simplifying Difference Quotients.

Observe that none of the expressions below are defined when \(h=0\text{;}\) don’t attempt to evaluate at this value. Instead, simplify as much as possible. Show your work carefully as a sequence of equal expressions seperated with the equal sign. Then try evaluating the resulting simplified expression at \(h=0\text{.}\)
  1. \(\displaystyle \displaystyle \frac{(2+h)^2-(4+h)}{h}\)
  2. \(\displaystyle \displaystyle \frac{\frac{1}{h+4}-\frac{1}{4}}{h}\)
  3. \(\displaystyle \displaystyle \frac{\frac{1}{(h+3)^2}-\frac{1}{9}}{h}\)
  4. \(\displaystyle \displaystyle \frac{\sqrt{h+2}-\sqrt{2}}{h} \cdot \frac{\sqrt{h+2}+\sqrt{2}}{\sqrt{h+2}+\sqrt{2}}\)
These kind of expressions are called difference quotients and play an important role in the development of calculus.
Answer.
  1. \(\displaystyle \frac{(2+h)^2-(4+h)}{h} = 3+h\) which evaluates to \(3\) when \(h = 0\text{.}\)
  2. \(\displaystyle \frac{\frac{1}{h+4}-\frac{1}{4}}{h} = \frac{-1}{4(4+h)}\) which evaluates to \(-1/16\) when \(h = 0\text{.}\)
  3. \(\displaystyle \frac{\frac{1}{(h+3)^2}-\frac{1}{9}}{h} = -\frac{h+6}{9 (h+3)^2}\) which evaluates to \(-2/27\) when \(h = 0\text{.}\)
  4. \(\displaystyle \frac{\sqrt{h+2}-\sqrt{2}}{h}\cdot \frac{\sqrt{h+2}+\sqrt{2}}{\sqrt{h+2}+\sqrt{2}} = \frac{1}{\sqrt{h+2}+\sqrt{2}}\) which evaluates to \(\frac{1}{2\sqrt{2}}\) when \(h=0\text{.}\)

Working with Exponents.

11. Rewriting Powers.

Write each term as a power of \(x\) using negative or rational exponents as necessary.
  1. \(\displaystyle \displaystyle 3x^4-\frac{1}{x^2} + \frac{2}{x}+1\)
  2. \(\displaystyle \displaystyle 4\sqrt{x}-5\sqrt[3]{x}+6\sqrt[5]{x^2}\)
  3. \(\displaystyle \displaystyle \frac{1}{x^5} + \frac{1}{\sqrt{x^5}} - \frac{1}{\sqrt[5]{x}}\)
  4. \(\displaystyle \displaystyle \frac{2}{x^3}-\frac{x^3}{2} + \frac{1}{2x^3}\)
Answer.
  1. \(\displaystyle \displaystyle 3x^4-\frac{1}{x^2} + \frac{2}{x}+1 = 3x^4-x^{-2}+2x^{-1}+1\)
  2. \(\displaystyle \displaystyle 4\sqrt{x}-5\sqrt[3]{x}+6\sqrt[5]{x^2} = 4x^{1/2}-5 x^{1/3} + 6 x^{2/5}\)
  3. \(\displaystyle \displaystyle \frac{1}{x^5} + \frac{1}{\sqrt{x^5}} - \frac{1}{\sqrt[5]{x}} = x^{-5}+x^{-5/2}-x^{-1/5}\)
  4. \(\displaystyle \displaystyle \frac{2}{x^3}-\frac{x^3}{2} + \frac{1}{2x^3} = 2x^{-3}-\frac{1}{2} x^3 +\frac{1}{2} x^{-3}\)

12. Rewriting Powers.

Rewrite each term without any negative or rational exponents.
  1. \(\displaystyle \displaystyle -5x^{1/3}-4x^{-3}+\frac{1}{x^{-3}}\)
  2. \(\displaystyle \displaystyle 4x^{-5}+\frac{x^{-4}}{5}-\frac{4}{x^{-5}}\)
  3. \(\displaystyle \displaystyle 4x^{-3/2}+5x^{-2/3}-6x^{4/2}\)
Answer.
  1. \(\displaystyle \displaystyle -5x^{1/3}-4x^{-3}+\frac{1}{x^{-3}} = -5 \sqrt[3]{x}-\frac{4}{x^3} + x^3\)
  2. \(\displaystyle \displaystyle 4x^{-5}+\frac{x^{-4}}{5}-\frac{4}{x^{-5}} = \frac{4}{x^{5}}+\frac{1}{5x^4} - 4x^{5}\)
  3. \(\displaystyle \displaystyle 4x^{-3/2}+5x^{-2/3}-6x^{4/2} = \frac{4}{\sqrt{x^3}} + \frac{5}{\sqrt[3]{x^2}} - 6 x^2\)

13. Laws of Exponents.

Simplify each expression, including rewriting any negative or rational exponents. You may assume all variables are positive real numbers.
  1. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{2}\)
  2. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{-2}\)
  3. \(\displaystyle \displaystyle \left(x^{-4} y^{3/2}\right)^{-2}\)
  4. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{2} \left(x^{-2} y^{1/2}\right)^4\)
  5. \(\displaystyle \displaystyle \left(\frac{2x^2 y}{x^4 y^0}\right)^{-2}\)
  6. \(\displaystyle \displaystyle \left(\frac{-2x^2 y^{3/2}}{x^4 y^1}\right)^{2}\)
Answer.
  1. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{2} = x^8 y^6\)
  2. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{-2} = \frac{1}{x^8 y^6}\)
  3. \(\displaystyle \displaystyle \left(x^{-4} y^{3/2}\right)^{-2} = \frac{x^8}{y^3}\)
  4. \(\displaystyle \displaystyle \left(x^4 y^3\right)^{2} \left(x^{-2} y^{1/2}\right)^4 = y^8\)
  5. \(\displaystyle \displaystyle \left(\frac{2x^2 y}{x^4 y^0}\right)^{-2} = \frac{x^4}{4y^2}\)
  6. \(\displaystyle \displaystyle \left(\frac{-2x^2 y^{3/2}}{x^4 y^1}\right)^{2} = \frac{4y}{x^4}\)

14. Laws of Exponents.

Simplify each expression. You may assume all variables are positive real numbers.
  1. \(\displaystyle \displaystyle \sqrt{64 x^6 y^5}\)
  2. \(\displaystyle \displaystyle \sqrt[3]{64 x^6 y^5}\)
  3. \(\displaystyle \displaystyle \sqrt{64 x^6 y^5} \sqrt{9 x^3 y^4}\)
  4. \(\displaystyle \displaystyle \frac{\sqrt[3]{27 x^6 y^5}}{\sqrt[3]{-8 x^3 y^4}}\)
Answer.
  1. \(\displaystyle \displaystyle \sqrt{64 x^6 y^5} = 8 x^3 y^2 \sqrt{y}\)
  2. \(\displaystyle \displaystyle \sqrt[3]{64 x^6 y^5} = 4 x^2 y \sqrt[3]{y^2}\)
  3. \(\displaystyle \displaystyle \sqrt{64 x^6 y^5} \sqrt{9 x^3 y^4} = 24 x^4 y^4 \sqrt{xy}\)
  4. \(\displaystyle \displaystyle \frac{\sqrt[3]{27 x^6 y^5}}{\sqrt[3]{-8 x^3 y^4}} = -\frac{3x \sqrt[3]{y}}{2}\)

15. Laws of Exponents.

Simplify each expression, including rewriting any negative or rational exponents. You may assume all variables are positive real numbers.
  1. \(\displaystyle \displaystyle x^{-2}\left(x^2-x^{-2}\right)\)
  2. \(\displaystyle \displaystyle \left(x^2+x^{-2}\right)\left(x^2-x^{-2}\right)\)
  3. \(\displaystyle \displaystyle \left(x^2-x^{-2}\right)^2\)
  4. \(\displaystyle \displaystyle \frac{x^2-x^{-2}}{x^2}\)
  5. \(\displaystyle \displaystyle x^{1/2}\left(x^{-1/2}-x^{1/2}\right)\)
  6. \(\displaystyle \displaystyle \frac{x^{1/2}-x^{-1/2}}{x^{1/2}}\)
Answer.
  1. \(\displaystyle \displaystyle x^{-2}\left(x^2-x^{-2}\right) = 1-\frac{1}{x^4} = \frac{x^4-1}{x^4}\)
  2. \(\displaystyle \displaystyle \left(x^2+x^{-2}\right)\left(x^2-x^{-2}\right) = x^4-\frac{1}{x^4} = \frac{x^8-1}{x^4}\)
  3. \(\displaystyle \displaystyle \left(x^2-x^{-2}\right)^2 = x^4+\frac{1}{x^4}-2 = \frac{x^8-2 x^4+1}{x^4}\)
  4. \(\displaystyle \displaystyle \frac{x^2-x^{-2}}{x^2} = 1-\frac{1}{x^4} = \frac{x^4-1}{x^4}\)
  5. \(\displaystyle \displaystyle x^{1/2}\left(x^{-1/2}-x^{1/2}\right) = 1-x\)
  6. \(\displaystyle \displaystyle \frac{x^{1/2}-x^{-1/2}}{x^{1/2}} = 1-\frac{1}{x} = \frac{x-1}{x}\)