Adding,
\begin{equation*}
(g+h)(x) = \frac{1}{x} + x^2-1.
\end{equation*}
This is defined for all \(x\neq 0\text{.}\) The domain of \(g+h\) is \((-\infty,0)\cup(0,+\infty)\text{.}\) We can simplify, if desired, to a single term
\begin{align*}
(g+h)(x) &= \frac{1}{x} + x^2-1\\
&= \frac{1}{x} + \frac{x^3-x}{x}\\
&= \frac{x^3-x+1}{x}
\end{align*}
Subtracting,
\begin{equation*}
(g-h)(x) = \frac{1}{x} - (x^2-1).
\end{equation*}
Observe the parenthesis. Distributing,
\begin{equation*}
(g-h)(x) = \frac{1}{x} - x^2+1.
\end{equation*}
The domain of \(g-h\) is \((-\infty,0)\cup(0,+\infty)\text{.}\)
Multiplying,
\begin{equation*}
(gh)(x) = \frac{1}{x} (x^2-1).
\end{equation*}
The domain of \(gh\) is \((-\infty,0)\cup(0,+\infty)\text{.}\) We can distribute, if desired,
\begin{equation*}
(gh)(x) = \frac{x^2}{x} - \frac{1}{x} = x-\frac{1}{x}.
\end{equation*}
Dividing,
\begin{equation*}
(g/h)(x) = \frac{\frac{1}{x}}{x^2-1}.
\end{equation*}
We require \(x\neq 0\text{,}\) but additional must require \(x^2-1\neq 0\) since dividing by zero is not permitted. The second requirement excludes \(x=\pm 1\text{.}\) So the domain of \(g/h\) is all real numbers \(x \neq -1,0,1\text{.}\) In interval notation this is
\begin{equation*}
(-\infty,-1)\cup(-1,0)\cup(0,1)\cup(1,+\infty).
\end{equation*}
We prefer to simplify complex fractions:
\begin{align*}
(g/h)(x)
&= \frac{\frac{1}{x}}{x^2-1} \cdot \frac{x}{x}\\
&= \frac{1}{(x^2-1)x}\\
&= \frac{1}{x^3-x}
\end{align*}