Skip to main content
Logo image

Precalculus JumpStart

Section 9.4 Basic Identities

Let’s recap some familar relationships between the trigonometric functions.
The most famous identity satisfied by trigonometric functions is the so-called Pythagorean Identity. From Definition 9.1, suppose that \((x,y)\) is a point on the terminal ray of \(\theta\) and \(r = \sqrt{x^2+y^2}\)
\begin{align*} \left[\sin(\theta)\right]^2 + \left[\sin(\theta)\right]^2 &= \left[\frac{y}{r}\right]^2 + \left[\frac{x}{r}\right]^2 \\ &= \frac{y^2}{r^2} + \frac{x^2}{r^2}\\ &= \frac{y^2+x^2}{r^2}\\ &= \frac{r^2}{r^2}\\ &= 1. \end{align*}
Thus,
\begin{equation*} \left[\sin(\theta)\right]^2 + \left[\cos(\theta)\right]^2 = 1. \end{equation*}
It’s customary to write positive integer powers of trigonometric function values like \(\left[\sin(\theta)\right]^2\) as \(\sin^2(\theta)\text{.}\) So, the identity becomes
\begin{equation*} \sin^2(\theta) +\cos^2(\theta) =1. \end{equation*}

Proof.

We have already proved the first indentity. Starting from here and dividing every term by \(\cos^2(\theta)\text{,}\)
\begin{gather*} \sin^2(\theta) +\cos^2(\theta) =1\\ \frac{\sin^2(\theta)}{\cos^2(\theta)} +\frac{\cos^2(\theta)}{\cos^2(\theta)} = \frac{1}{\cos^2(\theta)}\\ \left[\frac{\sin(\theta)}{\cos(\theta)}\right]^2 +1 = \left[\frac{1}{\cos(\theta)}\right]^2 \end{gather*}
Using the Theorem 9.25,
\begin{equation*} \tan^2(\theta) +1 = \sec^2(\theta). \end{equation*}
The third identity is left to you to prove.

Example 9.27. Finding Trigonometric Function Values Using Identities.

Suppose \(\cos(\theta) = -0.7\text{.}\) Let’s find the remaining trigonometric function values of \(\theta\text{,}\) given that \(\theta\) is a Quadrant III angle.
By the Pythagorean Identity,
\begin{equation*} \sin^2(\theta) = 1-\cos^2(\theta) \end{equation*}
so that
\begin{equation*} \sin(\theta) = \pm \sqrt{1-\cos^2(\theta)}. \end{equation*}
But sine is negative in Quadrant II, so
\begin{equation*} \sin(\theta) = {\color{red}-}\sqrt{1-\cos^2(\theta)} = \sqrt{1-(0.7)^2} \approx -0.51. \end{equation*}
Everything falls into place now using ratio and reciprocal identities:
\begin{gather*} \tan(\theta) \approx \frac{-0.51}{-0.7} \approx 0.73\\ \csc(\theta) \approx \frac{1}{-0.51} \approx -1.96\\ \sec(\theta) = \frac{1}{-0.7} \approx -1.43\\ \cot(\theta) \approx \frac{-0.7}{-0.51} \approx 1.37 \end{gather*}